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Abstract. We study the stability of the pulse solutions and the periodic solutions with large spatial periods of the

focusing nonlinear Schrödinger equation with a potential. We play with symmetries of the equation and consider the

edge bifurcation of the pulse solutions. Our results show spectral instability for all V0 > 0, which is a free parameter

in the potential, and spectral stability of the essential spectrum near the origin for V0 < 0 close to zero. We also

determined the instability mechanism for V0 > 0.

1 Introduction

We consider the focusing cubic nonlinear Schrödinger equation (NLS) with potential studied in [2]

iψt = −1
2
ψxx − |ψ|2ψ + V (x)ψ (1.1)

which models quasi-one-dimensional dilute-gas Bose-Einstein condensates (BEC) with attractive
atomic interaction trapped in an external potential, for example standing light waves, and where
ψ(x, t) is the macroscopic wave function of the BEC and

V (x) = −V0 sn2(x, k) ≡ V0(cn2(x, k)− 1) (1.2)

is a class of periodic potentials with the elliptic modulus k ∈ [0, 1].

For solutions of the form ψ(x, t) = φ(x, t)eiωt, the equation (1.1) becomes

iφt − ωφ = −1
2
φxx − |φ|2φ+ V (x)φ. (1.3)

We find the explicit formulas for V0 ≥ −k2

φ =
√
V0 + k2

k
dn(x, k) , ω = 1 +

V0

k2
− k2

2
, with period 2L(k) or,

(1.4)

φ =
√
V0 + k2 cn(x, k) , ω = V0 + k2 − 1

2
, with period 4L(k),

where

L(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

→∞ as k → 1−, (1.5)
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and cn(x, k) and dn(x, k) are the Jacobian elliptic cosine and delta amplitude functions, respectively,
sometimes referred to as cnoidal waves. There are many other explicit solutions; see, for example,
[2]. Numerically, they observed that the cn solutions are stable for V0 < 0 and unstable for V0 > 0
in [2]. However, the cnoidal cn waves fall into the regime where their instability criterion is not
decisive since the cn solutions have zeros. Either way, the sign criterion they used is necessary, but
never sufficient, for stability; it is really a parity instability criterion similar to the usual Evans
function argument for an odd number of unstable real eigenvalues. That is the reason we study this
problem; proving stability requires to actually compute the spectra of spatially periodic standing
waves on the real line to account for modulational instabilities.

Remark 1.1. As k → 1 (hyperbolic limit) the potential V (x) becomes −V0 tanh2(x) and dn/cn
waves approach a pulse,

√
V0 + 1 sech(x), with ω = V0 + 1

2 . As V0 → 0 (pure NLS limit) there
exists a pulse solution, sech(x), with ω = 1

2 and dn/cn periodic waves accompany the pulse.

2 The nonlinear Schrödinger equation with potential

Linearizing (1.3) about a t-independent real-valued solution q(x), then separating into real u and
imaginary v parts give the eigenvalue problem

L[q]

(
u

v

)
≡

(
0 L−

−L+ 0

)(
u

v

)
= λ

(
u

v

)
(2.1)

where

L+ = −1
2
∂2

∂x2
+ ω + [V (x)− 3q2(x)],

L− = −1
2
∂2

∂x2
+ ω + [V (x)− q2(x)].

(2.2)

The equations L+u = −λv, L−v = λu can also be written as the first-order system
u′ = ũ

ũ′ = 2(ω + V − 3q2)u+ 2λv
v′ = ṽ

ṽ′ = 2(ω + V − q2)v − 2λu

i.e., W ′ = [Aq(x) + λB]W (2.3)

with

W =


u

u′

v

v′

 , B =


0 0 0 0
0 0 2 0
0 0 0 0
−2 0 0 0

 , Aq =


0 1 0 0

2(ω + V − 3q2) 0 0 0
0 0 0 1
0 0 2(ω + V − q2) 0

 . (2.4)

We can easily check the following properties: recall that q is a real-valued function of x that satisfies
−1

2q
′′ + ωq − q3 + V (x)q = 0. For V0 = 0, L+q

′ = 0 and moreover L+(q + xq′) = −q for ω = 1
2 ,
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i.e., when q is the sech pulse of potential-less NLS. For any V0 and ω, L−q = 0 and L−(xq) = −q′.
In (u, v) variables, these facts about L± translate to the following statements about the λ = 0
eigenvalue:(

0
0

)
=

(
0 L−

−L+ 0

)(
q′

0

)
,

(
q′

0

)
translation eigenfunction,(

0
0

)
=

(
0 L−

−L+ 0

)(
0
q

)
,

(
0
q

)
rotation eigenfunction,(

q′

0

)
=

(
0 L−

−L+ 0

)(
0
−xq

)
,

(
0
−xq

)
generalized translation eigenfunction,(

0
q

)
=

(
0 L−

−L+ 0

)(
q + xq′

0

)
,

(
q + xq′

0

)
generalized rotation eigenfunction.

Going to (u, u′, v, v′) variables, we have that

ΦT =


q′

q′′

0
0

, ΦR =


0
0
q

q′

 solve the variational equation W ′ = Aq(x)W ;

ΨT =


−q′′

q′

0
0

, ΨR =


0
0
−q′

q

 solve the adjoint variational equation W ′ = −[Aq(x)]∗W ; and

Φ̂T =


0
0
−xq
−(xq)′

, Φ̂R =


q + xq′

(q + xq′)′

0
0

 solve W ′ = Aq(x)W +BΦ.

Note that if q(x) is the sech pulse or one of the cnoidal waves shown in (1.4), then q and q + xq′

are even functions, while q′ and −xq are odd functions. Also, L+ and L− both map even functions
to even functions, and odd functions to odd functions.

3 Spectra of pulses

We have mentioned that each of the operators L+ and L− maps odd functions to odd functions;
moreover, L− is invertible on the set of odd functions because ker(L−) = Span{q}, and here we
take q(·) to be even (it will be the sech pulse or the cn wave). Therefore, by using (L−)−1, the
eigenvalue equations L+u = −λv, L−v = λu combine to give L−L+u = −λ2u. Or, letting ν = λ2:

L−L+u = −νu (3.1)

When V0 = 0, on the set of odd functions we have ker(L−L+) = ker(L+) = Span{q′} from section 2,
i.e., when V0 = 0, (3.1) is satisfied by ν = 0, u = u0 ≡ q′.
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3.1 Translation and rotation eigenvalues

Let us write ε ≡ V0, and expand in powers of ε. Then we have the following expansions:

ν = 0 + bε+O(ε2), (3.2)

u = u0 + εu1 +O(ε2) with 〈u0, u1〉 = 0, (3.3)

L− = L0
− + εL1

− +O(ε2), (3.4)

L+ = L0
+ + εL1

+ +O(ε2). (3.5)

Note that L0
+u0 = 0 and L1

+ =
∂

∂ε
L+

∣∣∣∣
ε=0

=
[
∂ω

∂V0
+
∂V (x)
∂V0

− 6q
∂q

∂V0

]
V0=0

.

Substituting the expansions into (3.1) gives

L0
−L

0
+u0 + ε

(
L0
−L

0
+u1 + L0

−L
1
+u0 + L1

−L
0
+u0

)
= −εbu0 +O(ε2). (3.6)

Using L0
+u0 = 0 to simplify, and collecting terms of O(ε), we obtain

L0
−(L0

+u1 + L1
+u0) = −bu0,

L0
+u1 + L1

+u0 = −b(L0
−)−1u0,

〈L0
+u1 + L1

+u0, u0〉 = −b〈(L0
−)−1u0, u0〉,

〈u1, L
0
+u0〉+ 〈L1

+u0, u0〉 = −b〈(L0
−)−1u0, u0〉. (3.7)

Thus, we have

b = −
〈L1

+u0, u0〉
〈(L0

−)−1u0, u0〉
. (3.8)

Further note that as L−(xq) = −q′, we have (L0
−)−1u0 = (L0

−)−1q′ = −xq and hence the denomi-
nator becomes 〈(L0

−)−1u0, u0〉 =
∫
−xqq′ = 1

2

∫
q2 after integration by parts.

For the pulse at k = 1:

Since V (x) = −V0tanh2(x), q =
√
V0 + 1sech(x), and ω = V0+1

2 , we have
∂V (x)
∂V0

= −tanh2(x), 6q
∂q

∂V0
=

3 sech2(x), and
∂ω

∂V0
= 1. So we obtain

L1
+u0 = [1− tanh2(x)− 3 sech2(x)]q′ = −2 sech2(x)q′, (3.9)

〈L1
+u0, u0〉 = −2

∫ ∞

−∞
sech2(x) · (q′)2 dx

= −2(V0 + 1)
∫ ∞

−∞
sech2(x) · tanh2(x) sech2(x) dx, (3.10)

〈(L0
−)−1u0, u0〉 =

1
2
(V0 + 1)

∫ ∞

−∞
sech2(x) dx, (3.11)

hence

b = 4

∫∞
−∞ sech4(x) tanh2(x) dx∫∞

−∞ sech2(x) dx
=

8
15
. (3.12)
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For the cn waves at k < 1:

Since V (x) = V0(cn2(x, k) − 1), q =
√
V0 + k2 cn(x, k), and ω = V0 + k2 − 1

2 , we have
∂V (x)
∂V0

=

cn2(x, k)− 1, 6q
∂q

∂V0
= 3 cn2(x, k), and

∂ω

∂V0
= 1. So we obtain

L1
+u0 = [1 + cn2(x, k)− 1− 3 cn2(x, k)]q′ = −2 cn2(x, k)q′, (3.13)

〈L1
+u0, u0〉 = −2

∫ 2L(k)

−2L(k)
cn2(x, k) · (q′)2 dx

= −2(V0 + k2)
∫ 2L(k)

−2L(k)
cn2(x, k) · dn2(x, k) sn2(x, k) dx, (3.14)

〈(L0
−)−1u0, u0〉 =

1
2
(V0 + k2)

∫ 2L(k)

−2L(k)
cn2(x, k) dx, (3.15)

hence

b = 4

∫ 2L(k)
−2L(k) cn2(x, k) dn2(x, k) sn2(x, k) dx∫ 2L(k)

−2L(k) cn2(x, k) dx
> 0, ∀k ∈ (0, 1). (3.16)

For the dn waves at k < 1:

Since V (x) = −V0 sn2(x, k), q =
√
V0 + k2

k
dn(x, k), and ω = 1 +

V0

k2
− k2

2
, we have

∂V (x)
∂V0

=

−sn2(x, k), 6q
∂q

∂V0
=

3
k2

dn2(x, k), and
∂ω

∂V0
=

1
k2

. So we obtain

L1
+u0 =

[
1
k2
− sn2(x, k)− 3

k2
dn2(x, k)

]
q′

=
1
k2

[1− k2 sn2(x, k)− 3 dn2(x, k)] q′

=
1
k2

[ dn2(x, k)− 3 dn2(x, k)] q′ =
−2
k2

dn2(x, k) q′, (3.17)

〈L1
+u0, u0〉 =

−2
k2

∫ L(k)

−L(k)
dn2(x, k) · (q′)2 dx

=
−2
k2

∫ L(k)

−L(k)
dn2(x, k) ·

(√
V0 + k2

k
· (−k2) sn(x, k) cn(x, k)

)2

dx

= −2(V0 + k2)
∫ L(k)

−L(k)
dn2(x, k) · sn2(x, k) cn2(x, k) dx, (3.18)

〈(L0
−)−1u0, u0〉 =

(V0 + k2)
2k2

∫ L(k)

−L(k)
dn2(x, k) dx, (3.19)

hence

b = 4k2

∫ L(k)
−L(k) dn2(x, k) sn2(x, k) cn2(x, k) dx∫ L(k)

−L(k) dn2(x, k) dx
> 0, ∀k ∈ (0, 1). (3.20)
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In summary, for V0 6= 0 and k ∈ (0, 1], we have ν = bV0 +O(V 2
0 ), i.e.,

λ2 = bV0 +O(V 2
0 ),

λ = ±
√
V0(b+O(V0)) (3.21)

where b > 0 and b = 8
15 for k = 1. This implies that for all k ∈ (0, 1], to leading order the eigenvalues

are imaginary if V0 < 0 (linear stability), whereas in the case of V0 > 0 there is spectrum off the
imaginary axis (linear instability).

3.2 Edge bifurcations

Consider the pulse q = sech(x) at V0 = 0, with ω = 1
2 . The essential spectrum associated with this

solution of the partial differential equation (PDE) is σess = {λ ∈ iR : |λ| ≥ 1
2}. The eigenvalue

problem can be expressed as[(
∂2

∂x2
− 1
)(

1 0
0 1

)
+ 2q2

(
3 0
0 1

)
+ 2λ

(
0 −1
1 0

)](
u

v

)
= 0. (3.22)

Parametrising by λ = i
2(1− µ2) indicates that the function

Vu = eµx

[
−1

2
(1 + µ2 − 2µ tanh(x))

(
1
i

)
+ sech2(x)

(
1
0

)]
(3.23)

solves L[q]

(
u

v

)
= i

2(1− µ2)

(
u

v

)
for µ > 0 when V0 = 0.

As a first-order system, the eigenvalue problem (2.3) is

u′ = ũ, v′ = ṽ,

ũ′ = [1− 6 sech2(x)− 4V0 sech2(x)]u+ i(1− µ2)v,

ṽ′ = [1− 2 sech2(x)]v − i(1− µ2)u, (3.24)

upon taking ω = V0 + 1
2 , V = −V0 tanh2(x), q =

√
V0 + 1 sech(x). We rewrite it as

Y ′ =

(
0 I

M 0

)
Y where Y =


u

v

u′

v′

 , M =

(
1− 6 sech2(x)− 4V0 sech2(x) i(1− µ2)

−i(1− µ2) 1− 2 sech2(x)

)
.

(3.25)

Then Yu =

(
Vu

(Vu)′

)
is a solution when V0 = 0, and its associated adjoint vector is X =

(
−(Vu)′

Vu

)
.

What happens when we turn on V0:
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We extend the Evans function across the essential spectrum, using Vu [4]; then we seek zeros of
E(µ, V0). We have the following relation:

µ ∈ iR ↔ λ ∈ σess

µ ∈ R− ↔ resonance pole (‘eigenfunction’ blows up at ±∞)

µ ∈ R+ ↔ edge bifurcation

Using the notation introduced above, the extended Evans function is

E(µ, V0) =
〈
Vu,

∂M

∂V0
Vu

〉
L2

∣∣∣∣
µ=0

V0 +
〈
X ∗, 2

∂Vu

∂µ

〉∣∣∣∣
x=0,µ=0

µ+ h.o.t.

= −14
15
V0 + 1 · µ+ h.o.t. (3.26)

To leading order, E(µ, V0) = 0 for µ = 14
15V0 gives the edge bifurcation for V0 > 0 or no edge

bifurcation for V0 < 0, and

λedge =
i
2

[
1−

(
14
15

)2

V 2
0

]
. (3.27)

4 Spectra of wave trains with large spatial period

Recall, from section 2, the eigenvalue problem L[q]

(
u

v

)
= λ

(
u

v

)
written as a first-order system

(2.3):
W ′ = [Aq(x) + λB]W

with W,Aq, B defined as in (2.4). Here we will let q represent either a homoclinic solution h(x)
(sech pulse) or a periodic solution pL(x) (cnoidal wave).

In this section we shall determine the spectra of cnoidal wave-trains which approach the primary
pulse with ever increasing period as the parameter k tends to 1. Gardner [3] showed that a long-
wavelength periodic solution close to a homoclinic orbit possesses a loop of (essential) spectra in
a neighborhood of each isolated eigenvalue of the primary pulse. By Floquet theory, the spectral
stability problem for a 2L-periodic wave pL(x) can be stated as follows:

λ ∈ C is in the spectrum of the linearisation L[pL] if and only if there is a γ ∈ R/2πZ and a
bounded function W (x) such that

W ′ = [ApL(x) + λB]W for |x| < L,

W (L) = eiγW (−L).
(4.1)

If the primary pulse has eigenvalue(s) at 0 (as is the case here due to translation and rotation
invariance), then for the 2L-periodic wave trains that accompany the pulse, it is critical to determine
the location of the loop of spectra near 0, i.e., to solve the boundary value problem (4.1) for λ close
to 0: λ(γ) will be parametrised by γ ∈ [0, 2π) such that λ(0) = 0.
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4.1 Review of Liapunov-Schmidt method

The general theory developed in [5] applies to our problem, subject to a few modifications that
will be described later. The basic theorem that we apply (Theorem 2.2 of [5]) can be summarised
as follows: under certain assumptions on the pulse h and accompanying periodic solution pL, (4.1)
has a solution for γ ∈ R/2πZ and λ ∈ C close to 0 if and only if

detE(λ, γ) = 0 (4.2)

where the m×m matrix E is analytic in (λ, γ) and, for 1 ≤ j, k ≤ m,

Ekj(λ, γ) = (eiγ − 1)〈Ψk(L), Φj(−L)〉+ (1− e−iγ)〈Ψk(−L), Φj(L)〉

−λ
∫ ∞

−∞
〈Ψk(x), BΦj(x)〉 dx

+(eiγ − 1)Rkj(λ, γ) + λR̃kj(λ, γ) (4.3)

Here the Φj are linearly independent, bounded solutions to the variational equation W ′ = Ah(x)W
about the pulse, and the Ψk are linearly independent, bounded solutions to the adjoint variational
equation W ′ = −[Ah(x)]∗W . Estimates for the remainder terms Rkj(λ, γ), R̃kj(λ, γ) and their
derivatives with respect to λ, γ are given in [5].

The assumptions are essentially that the periodic solution pL(·) has sufficiently large period and
is close enough to the homoclinic h(·); also h is assumed to be nondegenerate in the sense that
solutions generated by symmetries of the PDE, i.e., the Φj , form a basis for all bounded solutions
to the variational equation W ′ = Ah(x)W .

In our case, translation and rotation symmetry of the PDE with V0 = 0 generate a two-dimensional
eigenspace for λ = 0, i.e. the geometric multiplicity of λ = 0 is 2, and the set of all bounded
solutions of W ′ = Ah(x)W is spanned by two linearly independent functions ΦT (x) and ΦR(x). In
other words, we have m = 2, and shall take Φ1 = ΦT , Φ2 = ΦR and Ψ1 = ΨT , Ψ2 = ΨR, where all
these functions are as described in section 2.

To understand what modifications should be made to this theorem in order to solve the problem
at hand, let us review some main points in the derivation of E(λ, γ). The derivation hinges on the
Liapunov-Schmidt reduction method which replaces an equation Lu = 0, where L : X → Y is a
Fredholm operator, by a simpler equation of the form

L̃u = 0, L̃ : N(L) → R(L)⊥.

This reduces the dimension of the problem, as dim(R(L̃)) = dim(Y )− dim(R(L)).

First, (4.1) is rewritten in the extended form

W ′
− = Ah(x)W− + [ApL(x)−Ah(x) + λB]W−, x ∈ (−L, 0),

W ′
+ = Ah(x)W+ + [ApL(x)−Ah(x) + λB]W+, x ∈ (0, L), (4.4)

W+(L) = eiγW−(−L),
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together with the matching condition W−(0) = W+(0). Instead of requiring that W−(0) = W+(0)
be satisfied at the outset, system (4.4) is solved first, with a discontinuity ξ(λ, γ) allowed at x = 0
within a two-dimensional subspace of R4 (because m = 2). Then, at the final step, we will solve
ξ = 0, i.e. seek (λ, γ) such that W+ and W− are the same at x = 0.

To solve (4.4), write W±(x) =
∑m

j=1 djφj(x) + w±(x), where φj(x) satisfy W ′ = ApL(x)W (the
variational equation about the periodic solution) together with W (L) = W (−L), and reformulate
the problem in terms of w±. Expressions for the jumps w+(0) − w−(0) along the directions Ψk

(k = T,R), denoted ξk ≡ 〈Ψk(0), w+(0) − w−(0)〉, are then derived using variation-of-constants
formulas, exponential dichotomies and the Liapunov-Schmidt reduction procedure. Proximity of
the periodic solution to the homoclinic solution is exploited to derive error estimates that justify
the formulas for the jumps.

We remark that in (4.3), the integral term arises from the inhomogeneous terms of the differential
equations for w±, upon applying the variation-of-constants formula. It is essentially a Melnikov
integral which measures the jump size for small values of λ 6= 0, assuming L = ∞ (i.e. it measures
how the λ = 0 eigenfunctions split as λ is turned on, while ignoring the boundary conditions at
±L). This integral also has an interpretation as the derivative of the Evans function associated
with the primary pulse h, so it vanishes if λ = 0 is an eigenvalue of algebraic multiplicity greater
than 1. The inner product terms in (4.3), on the other hand, contain information about jump sizes
when λ is taken to be 0, but with L <∞. In other words, the effect of the boundary (Bloch-wave)
condition W+(L) = eiγW−(−L) is measured by these inner product terms.

Formula (4.3) cannot be applied directly to locate the spectra of the cnoidal waves. One reason is
that the Melnikov integral terms

λ

∫ ∞

−∞
〈Ψk(x), BΦj(x)〉 dx (4.5)

(where k, j = T or R) are zero to O(λ), because the algebraic multiplicity is 2 for each eigenspace
corresponding to the translation and rotation symmetries. To obtain the integral terms of next
order, we need to compute the O(λ2) jump, which is

1
2
λ2 ∂

2ξ

∂λ2

∣∣∣∣
λ=0

=
1
2
λ2 〈Ψ(0), w+

λλ(0)− w−λλ(0)〉
∣∣
λ=0

≡ 1
2
λ2〈Ψ(0), w+

2 (0)− w−2 (0)〉 (4.6)

Differentiating W ′ = [A(x) + λB]W with respect to λ and setting λ = 0 gives

W ′ = [A(x) + λB]W,
W ′

λ = [A(x) + λB]Wλ +BW,

W ′
λλ = [A(x) + λB]Wλλ + 2BWλ,

w′0 = A(x)w0,

w′1 = A(x)w1 +Bw0,

w′2 = A(x)w2 + 2Bw1.

(4.7)

Applying the variation-of-constants formula to w′2 = A(x)w2+2Bw1 generates integrals of the form

1
2
λ2

〈
Ψ(0),

∫ 0

∞
Φ+

u 2Bw1(x)dx−
∫ 0

−∞
Φ−s 2Bw1(x)dx

〉
= λ2

∫ ∞

−∞
〈Ψ(x), Bw1(x)〉 dx (4.8)
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where Φ+
u , Φ

−
s are evolution operators on R+,R− respectively (see [5] for details). Hence

λ2

∫ ∞

−∞
〈Ψ(x), BΦ̂(x)〉 dx (4.9)

is the next order integral term, where

Φ̂ solves W ′ = Ah(x)W +BΦ (4.10)

and Φ solves W ′ = Ah(x)W. (4.11)

For the cn waves, there is an added complication that the inner product terms in (4.3) also need
to be modified. This is because the formula was derived in [5] for a dn-type periodic solution
which approaches one copy of the primary homoclinic solution as the period tends to infinity.
The cn waves, in contrast, approach two symmetric copies of the sech pulse as k → 1. With
W±(x) =

∑
djφj(x) + w±(x), where j = T or R, the boundary condition W+(L) = eiγW−(−L)

now translates to

w+(L)− eiγw−(−L) = (1 + eiγ)
∑

djφj(−L) = −(1 + eiγ)
∑

djφj(L) (4.12)

instead of (eiγ − 1)
∑

djφj(−L) = (eiγ − 1)
∑

djφj(L) (4.13)

because cn waves have φ(L) = −φ(−L) instead of φ(L) = φ(−L). Thus, the correct inner product
terms for the cn waves are

(1 + eiγ)〈Ψ(L), Φ(−L)〉+ e−iγ [−(1 + eiγ)]〈Ψ(−L), Φ(L)〉

= (1 + eiγ)〈Ψ(L), Φ(−L)〉 − (1 + e−iγ)〈Ψ(−L), Φ(L)〉 (4.14)

instead of

(eiγ − 1)〈Ψ(L), Φ(−L)〉+ e−iγ(eiγ − 1)〈Ψ(−L), Φ(L)〉

= (eiγ − 1)〈Ψ(L), Φ(−L)〉+ (1− e−iγ)〈Ψ(−L), Φ(L)〉 (4.15)

in the case of dn waves.

Therefore, for the cn waves, the corresponding formulas for the jumps at x = 0 are

ξkj = (1 + eiγ)〈Ψk(L), Φj(−L)〉 − (1 + e−iγ)〈Ψk(−L), Φj(L)〉

−λ2

∫ ∞

−∞
〈Ψk(x), BΦ̂j(x)〉 dx+Rkj(λ, γ). (4.16)

4.2 Coefficients for translation eigenvalues

For V0 = 0 and k < 1 but close to 1 (so that L� 1), we calculate the translation-related jump as
follows. Taking k = T, j = T in (4.16), and using the expressions

ΦT =


q′

q′′

0
0

 , ΨT =


−q′′

q′

0
0

 , BΦ̂T =


0

−2xq
0
0
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with q(x) = sech(x), the homoclinic solution at k = 1 and V0 = 0, we obtain

ξTT = (1 + eiγ)〈ΨT (L), ΦT (−L)〉 − (1 + e−iγ)〈ΨT (−L), ΦT (L)〉

−λ2

∫ ∞

−∞
〈ΨT (x), BΦ̂T (x)〉 dx+Rkj(λ, γ)

= (1 + eiγ)
[
−q′′(L)q′(−L) + q′(L)q′′(−L)

]
−(1 + e−iγ)

[
−q′′(−L)q′(L) + q′(−L)q′′(L)

]
+2λ2

∫ ∞

−∞
q′ · xq dx+Rkj(λ, γ)

= 2(1 + eiγ)q′(L)q′′(L) + 2(1 + e−iγ)q′(L)q′′(L)

+2λ2

∫ ∞

−∞
xqq′ dx+Rkj(λ, γ)

= 4(1 + cos γ)q′(L)q′′(L)− λ2

∫ ∞

−∞
q2 dx+Rkj(λ, γ) (4.17)

using the reversible symmetry q′(−x) = −q′(x), q′′(−x) = q′′(x). Since q′(L)q′′(L) ∼ −4e−2L and∫∞
−∞ q2 dx = 2 we have, to leading order

ξTT ≈ −16(1 + cos γ)e−2L − 2λ2 (4.18)

Thus, solving ξTT = 0 gives

λ2 ≈ −8(1 + cos γ)e−2L. (4.19)

This accords with the results in [1], obtained via a formal asymptotic analysis.

Note that, when V0 = 0, we have λ ≈ ±i
√

8
√

(1 + cos γ) e−L. Since (1 + cos γ) ≥ 0, this means
that, to leading order, the spectrum for the wavetrain arising from the translation eigenvalue of
the pulse turns out to be purely imaginary, and hence does not necessarily generate instability.
However, when V0 6= 0, the potential breaks translation invariance of the PDE; the pulse eigenvalue
at 0 splits into two eigenvalues on the real axis, given by

λ2 =
8
15
V0 +O(V 2

0 ) (4.20)

as seen in section 3.

Combining (4.19) and (4.20) gives us the approximate position of the loops of spectra for the
wavetrains when V0 6= 0:

λ2 =
8
15
V0 − 8(1 + cos γ)e−2L

λ = ±

√
8
(

1
15
V0 − (1 + cos γ)e−2L

)
(4.21)
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4.3 Coefficients for rotation eigenvalues

The rotation-related jump, for V0 = 0 and k < 1 but close to 1, is calculated as follows. Taking
k = R, j = R in (4.16), and using the expressions

ΦR =


0
0
q

q′

 , ΨR =


0
0
−q′

q

 , BΦ̂R =


0
0
0

−2(q + xq′)


with q(x) = sech(x), we obtain

ξRR = (1 + eiγ)〈ΨR(L), ΦR(−L)〉 − (1 + e−iγ)〈ΨR(−L), ΦR(L)〉

−λ2

∫ ∞

−∞
〈ΨR(x), BΦ̂R(x)〉 dx

= (1 + eiγ)
[
−q′(L)q(−L) + q(L)q′(−L)

]
−(1 + e−iγ)

[
−q′(−L)q(L) + q(−L)q′(L)

]
+2λ2

∫ ∞

−∞
q · (q + xq′) dx

= −2(1 + eiγ)q(L)q′(L)− 2(1 + e−iγ)q(L)q′(L)

+2λ2

∫ ∞

−∞
q2 + xqq′ dx

= −4(1 + cos γ)q(L)q′(L) + 2λ2

∫ ∞

−∞
q2 − 1

2
q2 dx (4.22)

Since q(L)q′(L) ∼ −4e−2L and
∫∞
−∞ q2 − 1

2q
2 dx = 1 we have, to leading order

ξRR ≈ 16(1 + cos γ)e−2L + 2λ2 (4.23)

Thus, solving ξRR = 0 gives

λ2 = −8(1 + cos γ)e−2L

λ = ±i
√

8(1 + cos γ) e−L (4.24)

to leading order. Note that addition of the potential term does not break rotation invariance; with
V0 6= 0, q is still an eigenfunction of L− for λ = 0 (see section 2). Therefore the above formula gives
the position of the spectral loops for V0 6= 0 also.

Remark 4.1. In a similar fashion, the jumps ξTT , ξRR can also be calculated for the dn waves,
using the unmodified inner product terms (4.15). That is,

ξTT = (eiγ − 1)〈ΨT (L), ΦT (−L)〉+ (1− e−iγ)〈ΨT (−L), ΦT (L)〉

−λ2

∫ ∞

−∞
〈ΨT (x), BΦ̂T (x)〉 dx+Rkj(λ, γ)
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= −4(1− cos γ)q′(L)q′′(L)− λ2

∫ ∞

−∞
q2 dx+Rkj(λ, γ)

∼ 16(1− cos γ)e−2L − 2λ2 (4.25)

ξRR = (eiγ − 1)〈ΨR(L), ΦR(−L)〉+ (1− e−iγ)〈ΨR(−L), ΦR(L)〉

−λ2

∫ ∞

−∞
〈ΨR(x), BΦ̂R(x)〉 dx

= 4(1− cos γ)q(L)q′(L) + 2λ2

∫ ∞

−∞
q2 − 1

2
q2 dx

∼ −16(1− cos γ)e−2L + 2λ2 (4.26)

Solving ξRR = 0 gives, to leading order,

λ = ±
√

8
√

(1− cos γ) e−L (4.27)

Since (1 − cos γ) ≥ 0, this means that the loops of wave-train spectra arising from the rotation
eigenvalue of the pulse lie along the real axis. Thus the dn waves are unstable; this is true whether
or not the potential term is present. When V0 = 0, ξTT is the same as ξRR to leading order, so
in the no-potential case, the loops of wave-train spectra arising from the translation eigenvalue
of the pulse also lie along the real axis. Our instability result for dn wave-trains agrees with the
observations in [2].

Remark 4.2. Rather than using q = sech(x), the pulse at V0 = 0, to do the calculations, we
can take q =

√
V0 + 1 sech(x). This introduces the factor (V0 + 1) into the ξTT , ξRR expressions,

which gives rise to O(V0e−2L),O(λ2V0) terms. These will appear in the error estimates of the next
subsection.

4.4 Error estimates

Estimates for the remainder terms can be obtained as in [5]. In this subsection we summarise the
results, and refer to [5] for details. The jump function ξ is analytic in λ, V0 and can be written as

ξ = ξ0(V0, L) + λξ1(V0, L) + λ2ξ2(V0, L) +O(|λ|3)

The first, O(λ0), term is obtained by considering λ = 0, which leads to decoupling of the eigenvalue
problem into two independent equations L+u = 0, L−v = 0. Thus, terms due to translation and
terms due to rotation do not interact with each other, and the off-diagonal terms are zero at this
level. So

ξ0(V0, L) =

(
ξ
(0)
TT + E∞T (V0) 0

0 ξ
(0)
RR

)
(4.28)

where, extracting the λ-independent terms from subsections 4.2 and 4.3, we have

ξ
(0)
TT = −16(1 + cos γ)e−2L +O(e−3L + e−2L|V0|) (4.29)

E∞T = 2 · 8
15
V0 +O(|V0|2) (4.30)

ξ
(0)
RR = 16(1 + cos γ)e−2L +O(e−3L + e−2L|V0|) (4.31)
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The O(λ1) term is obtained in a fashion similar to the discussion in subsection 4.1 about mod-
ifying the Melnikov integral terms. Differentiating W ′ = [A(x) + λB]W with respect to λ and
setting λ = 0 gives w′1 = A(x)w1 + Bw0, where w′0 = A(x)w0. The term ξ1(V0, L) comes from
∂ξ
∂λ

∣∣∣
λ=0

= 〈Ψ(0), w+
1 (0) − w−1 (0)〉. We have already seen, in subsection 4.1, that the integral∫∞

−∞〈Ψ(x), BΦ(x)〉 dx arising from the inhomogeneous term Bw0 is zero; however, from the Bloch-
wave condition at ±L, inner product terms involving

〈ΨT (±L), Φ̂R(∓L)〉 and 〈ΨR(±L), Φ̂T (∓L)〉

will appear, which are of order e−L · e−L. Therefore

ξ1(V0, L) =

(
0 O(e−2L)

O(e−2L) 0

)
(4.32)

Another way of seeing the origin of these terms is to observe that w′1 = A(x)w1 +Bw0 is equivalent
to the generalised eigenfunction equations L+u1 = −v0, L−v1 = u0, where u0 = q′(x) and v0 = q(x).
These equations are decoupled from each other; moreover, since L+ is invertible on even functions
and v0 is even, while L− is invertible on odd functions and u0 is odd (see section 2), we can solve
each of the two equations for u1, v1 on R; thus the only contribution to the jump at O(λ1) must
come from the imposition of boundary conditions at x = ±L.

Finally, the O(λ2) coeffcients can be extracted from subsections 4.2 and 4.3, namely

ξ2(V0, L) =

(
ξ
(2)
TT 0
0 ξ

(2)
RR

)
+O(e−L + |V0|)

where ξ
(2)
TT = −2, ξ

(2)
RR = 2. (4.33)

4.5 Main results

Putting together the expressions obtained in subsections 4.2 to 4.4, we have that λ is in the spectrum
of the cn wave-train if, and only if,

E(λ, γ) ≡

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = 0 (4.34)

where

a11 = −2
[
λ2 − 8

15
V0 + 8(1 + cos γ)e−2L

]
+O

[
|V0|(|V0|+ e−2L) + e−3L + |λ|(|λ|+ |V0|+ e−L)

]
, (4.35)

a22 = 2
[
λ2 + 8(1 + cos γ)e−2L

]
+O

[
|V0|e−2L + e−3L + |λ|(|λ|+ |V0|+ e−L)

]
, (4.36)

a12

a21

}
= O

[
|λ|e−2L + |λ|2(|V0|+ e−L)

]
, (4.37)

and the higher-order remainder terms also satisfy the estimates in γ that are outlined in [5].

This result characterises the position of the spectrum near 0 when k is close to 1 (i.e., L� 1).
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5 Conclusions and discussion

We computed the essential spectrum (there is no point spectrum for spatially periodic waves on
R) of the cn waves in the long-wavelength limit for V0 close to zero and also proved that edge
bifurcations occur only for V0 > 0 (and that they do occur in that regime). Our results show
spectral instability for all V0 > 0 and spectral stability of the essential spectrum near the origin for
V0 < 0 close to zero. Bronski et al. already provided numerical evidence for this in [2] using direct
simulations. The global instability result for V0 > 0 is actually based on an “|N(L+)−N(L−)| > 1”
type Grillakis argument for the waves.

We also determined the instability mechanism for V0 > 0: the eigenfunctions which we computed
analytically show that the precise instability mechanism depends strongly on the wavelength and
the value of V0. The most unstable mode changes periodically in the wavelength between pairwise
attraction/repulsion and a translational instability where all individual pulses begin to move in one
direction.

We have not yet determined what happens to the original essential spectrum of the background
state when switching to the long-wavelength cn waves (other than looking at edge bifurcation that
is). This part of the spectrum ought to stay on the imaginary axis but we have not yet proved that.
This should follow from energy considerations (i.e., Krein signatures). We note that computing the
essential spectrum of the long-wavelength cn waves is subtle. Sandstede and Scheel [5] developed
the relevant theory for the case when λ = 0 is simple. Here, λ = 0 has multiplicity four, and all
these modes interact for the cn waves even though they are completely decoupled (in the invariant
function spaces of even and odd functions) for the solitons. This would be an interesting direction
for further study.
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